DIGITAL MOBILE RADIO
THE VERY BASICS
The DMR Difference

The areas covered here will be:

- Brief History
- Audio Quality Difference
- Spectrum Efficiency
- The Local and Worldwide Network
- Repeaters vs. Hotspots
- Code Plugs Basics
Brief History

DMR was developed in Europe by ETSI, European Telecomm Standards Institute and was adopted as Commercial Standard 20 years ago.

Initially, commercial business equipment was the only source of DMR handhelds and mobiles. Several ham radio vendors have since entered the DMR market with radios that are a bit more affordable and designed more for ham radio use.
Audio Quality Digital vs Analog

Where an analog signal will lose quality and readability as the signal strength is decreased, a digitally processed signal will remain clear until the signal is lost.
Spectrum Efficiency (Time Slots)

Where the bandwidth of an Analog FM signal is 25.0 kHz, the DMR (TDMA) bandwidth is only 12.5 kHz.

Not only does it occupy half of the required bandwidth, but it has the ability to transmit two separate conversations at the same time. This is accomplished by digitally splitting a transmitted signal into alternating 30 millisecond slices referred to as **Time Slots**.

TDMA = Time-Division Multiple Access
Spectrum Efficiency 30ms Time Slices

A repeater interweaves the incoming signals based on the Time Slot requested.
Time Slots

Much like a Duplex House, two totally separate families can reside in one structure.

These divisions are referred to as **Time Slots**.

Each house has its own set of rooms. These are referred to as **Talk Groups (TG)**.
Talk Groups

There are currently over 1500 Talk Groups, ranging from:
- Local Repeater Only
- Local Network Repeaters
- Statewide Groups
- Regional Groups
- Country Specific Groups
- Worldwide Groups
- Special Interest Groups

Examples of these groups include:
- Public Safety
- Outdoor Adventure
- JOTA (Scouting)
- EmComm
- Handi-Hams
- etc.
Talk Groups

Not all repeaters carry all Talk Groups (TG) depending on their network connection. The repeater’s owner assigns the TG and TS structure most beneficial for your area. This is to permit the most activity with the least amount of interference.

A ‘typical’ configuration might be:

<table>
<thead>
<tr>
<th>TG</th>
<th>Time Slot</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Local Cluster of Repeaters</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>Local Repeater Only</td>
</tr>
<tr>
<td>310, 311</td>
<td>2</td>
<td>Secondary Chat Groups</td>
</tr>
<tr>
<td>3100</td>
<td>1</td>
<td>National Calling Channel</td>
</tr>
<tr>
<td>3142</td>
<td>1</td>
<td>PA Statewide</td>
</tr>
<tr>
<td>3124</td>
<td>1</td>
<td>MD Statewide</td>
</tr>
<tr>
<td>3172</td>
<td>1</td>
<td>Northeast Regional</td>
</tr>
</tbody>
</table>
A Full Time (FT) group is one that is always available for monitoring. If the TG becomes active, you will hear the traffic immediately. These are normally Local and State groups.

A Push-to-Talk TG is one that requires activation and only stays active for a predefined amount of time. These would be high traffic groups, such as Nationwide, Worldwide, etc. The TG remains active for a given amount of time after your last PTT. It will then release the TS for other potential users. Only one TG can be active for each TS.

<table>
<thead>
<tr>
<th>Group</th>
<th>TG</th>
<th>Time Slot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Cluster</td>
<td>2</td>
<td>2 FT</td>
</tr>
<tr>
<td>Local</td>
<td>9</td>
<td>2 FT</td>
</tr>
<tr>
<td>Secondary</td>
<td>310</td>
<td>2 PTT (5 min)</td>
</tr>
<tr>
<td>Chat Groups</td>
<td>311, 312</td>
<td>2 PTT (15 min)</td>
</tr>
<tr>
<td>Nationwide</td>
<td>3100</td>
<td>1 PTT (5 min)</td>
</tr>
<tr>
<td>PA Statewide</td>
<td>3142</td>
<td>1 FT</td>
</tr>
<tr>
<td>MD State</td>
<td>3124</td>
<td>1 PTT (15 min)</td>
</tr>
</tbody>
</table>
Sample Repeater Configuration

<table>
<thead>
<tr>
<th>Talkgroup Name</th>
<th>Hold</th>
<th>Talkgroup ID</th>
<th>Talkgroup Name</th>
<th>Hold</th>
<th>Talkgroup ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penna State</td>
<td>FT</td>
<td>3142</td>
<td>Local Repeater</td>
<td>FT</td>
<td>9</td>
</tr>
<tr>
<td>Penna TAC</td>
<td>15</td>
<td>31421</td>
<td>Local Area</td>
<td>FT</td>
<td>2</td>
</tr>
<tr>
<td>Maryland State</td>
<td>FT</td>
<td>3124</td>
<td>TAC 310</td>
<td>5</td>
<td>310</td>
</tr>
<tr>
<td>North East Reg'l</td>
<td>FT</td>
<td>3172</td>
<td>TAC 311, 312</td>
<td>15</td>
<td>311, 312</td>
</tr>
<tr>
<td>Mid Atlantic</td>
<td>FT</td>
<td>3173</td>
<td>Delaware State</td>
<td>FT</td>
<td>3110</td>
</tr>
<tr>
<td>Nationwide</td>
<td>5</td>
<td>3100</td>
<td>Kentucky State</td>
<td>15</td>
<td>3121</td>
</tr>
</tbody>
</table>

Sample from Interstate c-Bridge

FT = Fulltime 5/15 = PTT activation time

Important to remember.
The configuration will vary from one repeater to another.
Contact your local club or repeater owner to determine the exact configuration.
Local / Worldwide Network

A sample repeater is shown here. Depending on its location, a ‘stand alone’ repeater can cover a local area of several miles, but when connected to a DMR network server, it can provide worldwide access.

Note: Repeater cost and operation can be quite expensive. Please support your local club or repeater owner.
The World Wide Network Latency

An example of the complexity of the network is shown here. Although the internet is fast, it is not instant. Your audio is digitally processed in your handheld, forwarded to the repeater, then to a regional server connected to a series of worldwide servers where it is distributed.

The process is then reversed before it is delivered to the receiving station. This is referred to as latency, a delay of your signal getting to the other end by as much as 2 seconds.

For this reason, it is advisable to pause for two or three seconds before making a return transmission to give a breaking station a chance to enter.
Push-to-Talk Analog vs Digital

Because of the number of TGs available, it’s very possible someone might be using a TG other than the one you are monitoring. If this occurs, your signal could interfere with theirs. This is avoided by the way DMR handles the PTT function.

With Analog, pressing the PTT keys the transmitter and you’re ready to go.

Not so on DMR. When the PTT is pressed, a signal is sent to the repeater which checks to see if the Time Slot is available. If it is, a data stream is sent back to the radio giving you the All Clear, sometimes generating a beep tone. This occurs in just under a second.

It is highly recommend that the BCLO (Busy Channel Lock Out) function is enabled. This prevents a station from transmitting on a Time Slot if it is currently active.

Another indicator that the TG is in use is an activity light on the handheld. If the LED is lit, the TS is in use.

When pressing the PTT, wait 1 or 2 seconds before speaking.
Busy Repeater Channel / Time Slot

You may see the Channel Busy indicator lit, but not hearing a conversation. This is caused by someone activating or using a repeater Talkgroup other than the one you are monitoring.

Digital Monitor (DMR)
Your DMR radio may have a ‘programmable key’ function labeled Digi Monitor or Promiscuous mode. This open allows you to monitor all activity on one or both time slots regardless of the Talkgroup in use. This is a monitoring function only.

Monitor Mode (Analog)
This is an analog function which opens the squelch allowing you to listen to activity on that frequency.

The Monitor and Digital monitor modes are not interchangeable.
You may hear reference to various networks, such as DMR-MARC, Brandmeister, TGIF, and others. Although these are independent networks, some do share Talk Groups between them.

Much like two pine trees planted side by side, as time evolves, more of the branches (Talk Groups) become common to both.

Some examples are shown on the next page.

Also, it should be noted that not all networks support the same features, such as GPS and APRS.
Shared Network TG Activity

Some examples of TG sharing are shown above.

There are 10 ‘TAC’ channels. While TAC 310, 311 and 312 are common to both networks, 313-319 are not.
US State Groups are common to both networks, while Regional Groups are not.
Several Networks Available

There are several networks available for ham radio use. It is recommended to investigate not only the available Talk Groups, but also the Location of the servers before making your selection.

Talk Groups - Not all servers share the same Groups. [BrandMeister TGs][1] [TGIF TGs][2]

The location of the server is also important. The further you are from a server, the longer the delay, or Latency.

For example, if you are in the US, the TGIF network and BrandMeister are excellent choices.
Repeater vs. Hotspot

There are two main pieces of equipment used to access the DMR network. One is a Repeater which is normally located at a high elevation with wide area coverage. The repeater is then linked to the internet allowing it to access one or more DMR network servers.

Note: Not all repeaters share the same Talk Groups. This is determined by the repeater’s owner.

The other is known as a Hot Spot. These were developed for local range access to a network when no repeater is available. These low power devices receive a user’s digital signal and pass it to a DMR network via the internet.
Activity Levels (DMR-MARC & BrandMeister)

This varies by Talkgroup (TG). Local groups usually carry the lowest level of activity, where State and Regional activity is a bit heavier. The bulk of the activity can be found on the National and World Wide TGs.

<table>
<thead>
<tr>
<th>TG</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local 2</td>
<td>Low</td>
</tr>
<tr>
<td>Local 9</td>
<td>Low</td>
</tr>
<tr>
<td>PA State</td>
<td>Med</td>
</tr>
<tr>
<td>MD State</td>
<td>Med</td>
</tr>
<tr>
<td>NE Reg’l</td>
<td>Med</td>
</tr>
<tr>
<td>Mid Atlantic</td>
<td>Med</td>
</tr>
<tr>
<td>TAC 310>312</td>
<td>Med</td>
</tr>
<tr>
<td>Nationwide</td>
<td>High</td>
</tr>
</tbody>
</table>
Important Operating Note TG-3100 Nationwide

- **TG 3100** was created as a shared Nationwide Calling Channel. If you are using a Hotspot, once activated, the group remains Static and will remain continuously active until another TG is selected.
 Note: Due to the high activity of 3100, Repeaters may require a PTT (kerchunk) once every 10 minutes to reactivate. This frees up repeater access to other users.

- **TG 310, 311, and 312** are secondary TAC channels. They are set up as PTT groups requiring a PTT (kerchunk) once every 10 minutes to reactivate.

- **TG 3100** is for establishing an initial contact. If the conversation continues for more than 3 or 4 minutes, stations should move to one of the three TAC channels to clear 3100 as a courtesy to those monitoring.

 Note: Also remember, there are over 1,500 available Talk Groups. If the activity is spread out, there is plenty room for everyone to enjoy the DMR experience.
Repeater and Network Operating Notes

- **3 second pause before PTT**
 This allows for network latency as well as a courtesy pause for those wanting to enter the conversation.

- **1 second pause after PTT**
 This is required for your radio to sync with the repeater and network

- **Time Slot in use**
 This is usually shown by an indicator light or a time slot busy tone on your radio.

- **Talkgroup in use**
 You may not immediately hear an active Talkgroup. When switching to a different TG, your radio may need to sync to a conversation already in progress.

- **Announcing your presence**
 Announce both your Call Sign and Talkgroup. This will allow someone who is scanning to identify your Talkgroup so they can answer your call.
Repeater and Network Operating Notes

• **Brandmeister Network “User Blocked” (521) ***
 When using the Brandmeister Network, your server access will be **blocked** for one hour if the following conditions are met:

 - **5** transmissions of less than **2** seconds within **1** minute.

 This is part of the network loop prevention. After one hour, access to that server will automatically be restored.
Network Activity Monitoring

- The following links allow you to see the network activity Real Time.

 - **Netwatch**
 http://cbridge1.wr3irs.com:42420/CallWatch
 http://cbridge2.wr3irs.com:42420/CallWatch

- **Hoseline (BrandMeister)**
 https://hose.brandmeister.network/
 Allows you to listen Live to activity.

- **Miklor.com**

- **K3NXU.com**
 www.K3NXU.com
 (DMR Section)
<table>
<thead>
<tr>
<th>Call Sign</th>
<th>Location</th>
<th>Time</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>KK7EBU</td>
<td>World-wide</td>
<td>07:17 ago</td>
<td>KK7EBU (Mark)</td>
</tr>
<tr>
<td>SV4IMN</td>
<td>Greece</td>
<td>07:16 ago</td>
<td>SV4IMN (Apostolos) SV4IMN DMR ID: 2020181</td>
</tr>
<tr>
<td>F5HFA</td>
<td>France</td>
<td>12:26</td>
<td>F5HFA (Jeannot)</td>
</tr>
<tr>
<td>F5HFA</td>
<td>Uruguay</td>
<td>07:16</td>
<td>KC4GYB (Eduardo M Largh) KC4GYB MIAMI</td>
</tr>
<tr>
<td>SY1BRU</td>
<td>Greece</td>
<td>07:12</td>
<td>SY1BRU (George)</td>
</tr>
<tr>
<td>F4INM</td>
<td>Technique</td>
<td>07:13</td>
<td>F4INM-2080515</td>
</tr>
<tr>
<td>EA3FZU</td>
<td>Spain</td>
<td>07:18 ago</td>
<td>EA3FZU (Ricardo)</td>
</tr>
<tr>
<td>EA3FZU</td>
<td>Spain</td>
<td>07:18 ago</td>
<td>EA3FZU (Ricardo)</td>
</tr>
<tr>
<td>KC4GYB</td>
<td>Uruguay</td>
<td>07:18 ago</td>
<td>KC4GYB MIAMI</td>
</tr>
<tr>
<td>IZ5TY</td>
<td>Italy</td>
<td>07:34 ago</td>
<td>IZ5TY (Daniele)</td>
</tr>
<tr>
<td>F6ZAF</td>
<td>Sweden</td>
<td>07:30 ago</td>
<td>F6ZAF (Alistair)</td>
</tr>
<tr>
<td>WB0AGU</td>
<td>USA</td>
<td>12.01</td>
<td>WB0AGU DMR ID</td>
</tr>
<tr>
<td>KD3NZI</td>
<td>USA</td>
<td>12.13</td>
<td>KD3NZI (Dennis) KD3NZI DMR ID</td>
</tr>
<tr>
<td>W6RTF</td>
<td>USA</td>
<td>07:26</td>
<td>W6RTF ASL293231 DVS Server M</td>
</tr>
<tr>
<td>KC4GYB</td>
<td>Uruguay</td>
<td>11.59</td>
<td>KC4GYB (Eduardo M Largh) KC4GYB MIAMI</td>
</tr>
<tr>
<td>LU9DJH</td>
<td>Argentina</td>
<td>07:22</td>
<td>LU9DJH (Jose Luis) LU9DJH-F3LU9DJH LU8AQL</td>
</tr>
</tbody>
</table>
Control Center K4USD Network

Active calls and History Filter

<table>
<thead>
<tr>
<th>start time</th>
<th>duration</th>
<th>source peer alias</th>
<th>source radio alias</th>
<th>dest. bridge group</th>
<th>RSSI (dBm)</th>
<th>site name</th>
<th>loss rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>03:24:02.537 Jan 2</td>
<td>1.0</td>
<td>BM Unknown or HotSpot (ID1)</td>
<td>CE1RJK - Nelson - Tome Bio Bio CHL -- 7305031</td>
<td>BM-WW CC</td>
<td>0.000</td>
<td>BM-US-3102</td>
<td>0.0%</td>
</tr>
<tr>
<td>03:23:47.241 Jan 2</td>
<td>15.8</td>
<td></td>
<td>3113735</td>
<td>K4IOB - James - Mansfield GA USA -- 3113735</td>
<td>Bridge CC</td>
<td>0.000</td>
<td>DMRX-P</td>
</tr>
<tr>
<td>03:23:56.230 Jan 2</td>
<td>0.5</td>
<td>BM Unknown or HotSpot (ID1)</td>
<td>CE1RJK - Nelson - Tome Bio Bio CHL -- 7305031</td>
<td>BM-WW CC</td>
<td>0.000</td>
<td>BM-US-3102</td>
<td>0.0%</td>
</tr>
<tr>
<td>03:23:52.838 Jan 2</td>
<td>1.5</td>
<td>BM Unknown or HotSpot (ID1)</td>
<td>AJ3C - Christopher - Albrightsville PA USA -- 1142055</td>
<td>TAC310 CC</td>
<td>0.000</td>
<td>DMRX-P</td>
<td>0.0%</td>
</tr>
<tr>
<td>03:23:11.525 Jan 2</td>
<td>31.1</td>
<td>BM Unknown or HotSpot (ID1)</td>
<td>KN4CHY - Keith - Seneca SC USA -- 3145646</td>
<td>Bridge CC</td>
<td>0.000</td>
<td>DMRX-P</td>
<td>0.0%</td>
</tr>
<tr>
<td>03:23:23.959 Jan 2</td>
<td>0.8</td>
<td>BM Unknown or HotSpot (ID1)</td>
<td>WH6L - Ed - San Benito Tx -- 3148961</td>
<td>BM-WW CC</td>
<td>0.000</td>
<td>BM-US-3102</td>
<td>0.0%</td>
</tr>
<tr>
<td>03:23:01.351 Jan 2</td>
<td>1.5</td>
<td>BM Unknown or HotSpot (ID1)</td>
<td>WH6FIX - Daryl - Kaneohe HI USA -- 3115212</td>
<td>TAC310 CC</td>
<td>0.000</td>
<td>DMRX-P</td>
<td>0.0%</td>
</tr>
<tr>
<td>03:22:19.635 Jan 2</td>
<td>41.0</td>
<td></td>
<td>3113735</td>
<td>K4IOB - James - Mansfield GA USA -- 3113735</td>
<td>Bridge CC</td>
<td>0.000</td>
<td>DMRX-P</td>
</tr>
<tr>
<td>03:22:48.427 Jan 2</td>
<td>1.2</td>
<td>BM Unknown or HotSpot (ID1)</td>
<td>AB9LF - Gary - Memphis IN USA -- 1118195</td>
<td>TAC311 CC</td>
<td>0.000</td>
<td>DMRX-P</td>
<td>0.0%</td>
</tr>
<tr>
<td>03:22:49.098 Jan 2</td>
<td>1.3</td>
<td>BM Unknown or HotSpot (ID1)</td>
<td>WA2HQL - John - Kannapolis NC USA -- 1137054</td>
<td>BM-WW CC</td>
<td>0.000</td>
<td>BM-US-3102</td>
<td>0.0%</td>
</tr>
<tr>
<td>03:22:33.823 Jan 2</td>
<td>6.6</td>
<td>AF7PR - Olympia WA USA -- 315323</td>
<td>N7EKB - Ed - Rainier WA USA -- 3153410</td>
<td>TAC310 CC</td>
<td>-98.5</td>
<td>DMRX-P</td>
<td>0.7%</td>
</tr>
<tr>
<td>03:22:21.443 Jan 2</td>
<td>3.2</td>
<td>BM Unknown or HotSpot (ID1)</td>
<td>K17SZZ - Toby - Rainier WA USA -- 3153710</td>
<td>TAC310 CC</td>
<td>0.000</td>
<td>DMRX-P</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
References

- Miklor – DMR Section
- The Amateur Radio Guide to DMR
- DMR Guide (UK)
- Applying for a DMR user ID
Code Plug (CP)

Don’t let the name scare you. A Code Plug (CP) is nothing more than the data file that is loaded to your DMR radio that sets the operating parameters. (Frequency, power, etc.)

You will also see reference to the CPS. This is simply the Code Plug Software.

Code plugs consist of 3 main parts
 (1) Contact List (Talk Groups to be assigned)
 (2) Channel Information
 (3) Zones (Channel groups or clusters)

Let take a look at the three pieces and how they tie together.
Code Plug – The Contact List

Before you start the trip, you need to know where you want to go. This is done by creating a Contact List. This is where the desired Talkgroup information can be found.

There are 2 main elements.

- **Talkgroup Name**
 Names you create for the desired DMR groups.

- **Talkgroup Number**
 This is the number assigned to each specific group.

The **Call Type** will always be “Group Call”
Code Plug – The Contact List

<table>
<thead>
<tr>
<th>No.</th>
<th>Contact Name</th>
<th>Call Type</th>
<th>Call ID</th>
<th>Call Receive Tone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Local 2</td>
<td>Group Call</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Local 9</td>
<td>Group Call</td>
<td>9</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Digital Simplex</td>
<td>Group Call</td>
<td>99</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>TAC 310</td>
<td>Group Call</td>
<td>310</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>TAC 311</td>
<td>Group Call</td>
<td>311</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>TAC 312</td>
<td>Group Call</td>
<td>312</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>MD 3124</td>
<td>Group Call</td>
<td>3124</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>PA 3142</td>
<td>Group Call</td>
<td>3142</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>PA TAC</td>
<td>Group Call</td>
<td>31421</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>Northeast</td>
<td>Group Call</td>
<td>3172</td>
<td>No</td>
</tr>
<tr>
<td>11</td>
<td>MidAtlantic</td>
<td>Group Call</td>
<td>3173</td>
<td>No</td>
</tr>
<tr>
<td>12</td>
<td>Southeast</td>
<td>Group Call</td>
<td>3174</td>
<td>No</td>
</tr>
<tr>
<td>13</td>
<td>WorldWide</td>
<td>Group Call</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>14</td>
<td>N America</td>
<td>Group Call</td>
<td>3</td>
<td>No</td>
</tr>
<tr>
<td>15</td>
<td>WorldWide English</td>
<td>Group Call</td>
<td>13</td>
<td>No</td>
</tr>
<tr>
<td>16</td>
<td>Nat 3100</td>
<td>Group Call</td>
<td>3100</td>
<td>No</td>
</tr>
</tbody>
</table>
Code Plug – The Channel Information

This looks more complex than it actually is

<table>
<thead>
<tr>
<th>Mode</th>
<th>Digital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>The repeater’s Rx / Tx frequency</td>
</tr>
<tr>
<td>Color Code</td>
<td>1 (The digital equivalent of CTCSS, normally 1)</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>12.5 kHz</td>
</tr>
<tr>
<td>Time Slot</td>
<td>1 or 2 (Whatever is assigned to that TG)</td>
</tr>
<tr>
<td>Tx Contact</td>
<td>Talkgroup selected from the Contact List</td>
</tr>
<tr>
<td>Rx Contact</td>
<td>“None” will default to the Tx Contact</td>
</tr>
<tr>
<td>Power</td>
<td>High or Low</td>
</tr>
<tr>
<td>Tx Criteria</td>
<td>“Channel Free”, Color Code, Always</td>
</tr>
<tr>
<td>Scan List</td>
<td>Optional</td>
</tr>
</tbody>
</table>
Code Plug – Channel Creation Hints

• A separate channel needs to be created for every TG desired.

• Not all repeaters carry every TG (over 1500 possibilities). This is at the discretion of the repeater owner.

• Start your initial channel list with only 5-10 channels. Until you become comfortable with code plugs, start small. It’s much easier to correct 5 channels than 150.

• There is no Master CP. It’s is recommended to start with reviewing a Sample CP. From there you can get a feel for how one is assembled.
Code Plug – The Channel Information

![Channels Information Window]

Digital/Analog Data
- **Channel Mode**: Digital
- **Band Width**: 12.5kHz
- **Scan List**: None
- **Squelch**: Normal
- **RX Ref Frequency**: Medium
- **TX Ref Frequency**: Medium
- **TOT[s]**: 180
- **TOT Rekey Delay[s]**: 0
- **Power**: High
- **Channel Name**: S Local 2
- **RX Frequency(MHz)**: 449.72500
- **TX Frequency(MHz)**: 444.72500
- **Admit Criteria**: Always

Digital Data
- **Private Call Confirmed**:
- **Emergency Alarm Ack**:
- **Data Call Confirmed**:
- **Compressed UDP Data Header**:
- **Emergency System**: None
- **Contact Name**: Local 2
- **Group List**: None
- **Color Code**: 1
- **Repeater Slot**: 2
- **Privacy**: None
- **Privacy No.**: 1
- **In Call Criteria**: Always
The Zone is where you group channels together by category. For instance, if you want the channels for a particular repeater in one group, you would assign them to their own Zone (channel bank).

They can be grouped by:
- Repeater
- Location
- Activity
- Analog Repeaters
- Simplex
- etc.

You can mix and match. The choice is yours.
Code Plug – The Zone

Zone Information

Zone Name: Shrews

Available Channel
- New York
- Virginia
- TAC 1
- W Wide
- WW Engl
- NE Regl
- Mid Atlan
- Key
- Local 2
- Local 8
- Local 9
- TAC 310
- TAC 311
- TAC 312
- Nat 3100
- Key PA State
- Delaware
- Wash DC
- Maryland
- New York
- Virginia
- TAC 1
- W Wide

Channel Member
- Local 2
- PA TAC
- Nat 3100
- Local 8
- Local 9
- TAC 310
- TAC 311
- TAC 312
- PA State
- Delaware
- Wash DC
- Maryland
- S N America
- 446.075 Dig
- 446.500 Dig
- Parrot
Code Plug – The Scan List

After the channels are set up, consider using Scan Lists. This is where you create a group of channels that you would like to Scan when selected. Give the Scan List a name describing the included channels. The list can now be assigned to one or more channels.
You can now assign this list to a channel in the drop down labeled Scan List. When that channel is selected, using the programmable key assigned to Scan will start the scanning function for the specified group.
Code Plug Samples

Code Plugs are a bit intimidating at first. To assist with this, examining a sample code plug for your radio is recommended.

Some sources of samples are:
- Miklor There is a Sample Code Plug section.
- Facebook Find a group for your specific radio. Check the ‘Files’ section.
- Radio Club Ask a member with the same model.
- Google Search

Remember, every code plug is different. Use these as a guide and customize to your desired setup.
Summary

• First and foremost, never forget that this is a hobby.

• Individuals have invested their time and money in support of this network. Repeaters, Servers and Networks require maintenance. Support your local club whenever possible.

• If a network or online software develops a temporary issue, be patient. These volunteers have families and jobs which is their first priority.

• Take the time to say Thank You.
Conclusion

• I hope I was able to answer a few of your entry level questions. The purpose of this presentation was to help you feel a bit more comfortable with some of the basics and terminology used in the DMR world.

• Don’t expect to become a master at this in a few days. Experiment by creating your own code plugs. Have fun and I’ll see you on DMR.

John ‘Miklor’
K3NXU

Miklor.com/DMR Support Miklor